
(Refer Slide Time: 17:10) 

 

So, now, the recursive a solution will say, that how do a figure of what the rest of the tree 

looks like, well if I have a situation, where I have decided x and y both here. Then, I will 

kind of tree, this is a unit and make a new letter call x, y and give it the cumulative 

frequency effects plus x, y of the old two letter. So, construct the new alphabet and 

which I drop x and y and I add a new composite of hybrid letter x, y; whose frequencies 

going to be f x plus f y. 

Now, recursion fiction, I have a k minus 1 letter alphabet, so I have recursively find and 

optimal encoding of that. Now, before coming to how to adapt the solution, the recursive 

ends when have a only two letters, for two the optimal solution is to build the tree which 

exactly two leaves, label 0 and 1 at the path. So, this is the basic case, if I have more than 

two letters I will recursively construct tree to the smaller thing and then I will come back 

and now, the tree that I constructed I will have some where the leaf label x y. 

Now, x y is not a letter, so what I do is, I will replace this, write new two leaves called x 

and y. So, I will go from the tree over a A prime to a tree over A by doings. So, this is an 

algorithm called by develop Huffman and this type of coding is call Huffman coding. 

551



(Refer Slide Time: 18:36) 

 

So, let us look at this example that we had earlier, so here the two lowest frequency 

letters d and e. So, we merge them into the new letter d, e and this is a frequency 0.23, 

because it is 0.18 plus 0.05. Now, these two are a two lowest letters, so we merge them 

and we get a new letter c, d, e of cumulative frequency 0.43, which is some of all the 

frequencies are that two values. 

Now, terms out that, these two are the smaller two. So, I is them the letter a, b and now, I 

breast my base case where have exactly two letters. So, I can set of the trivial tree this 

two letters, label 0 and 1. And now I work backwards, so the last thing that I did was to 

merge a and b, now I will take this a and b thing and split it has a and b. 

552



(Refer Slide Time: 19:30) 

 

I will split a, b as a and b, I will get this print, then the previous step was to combine c, d 

e into c and d, e. So, I am going to the split this c and d, e. 

(Refer Slide Time: 19:40) 

 

And finally, I am going to split this up is d and e. So, this is Huffman’s algorithm and by 

recursively combining the two lowest frequency nodes, and then taking the composite 

node and splitting them back up to it is. 

553



(Refer Slide Time: 19:56) 

 

So, to show that this algorithm is the optimal, we go by the end of the size in the 

algorithm. Now, clearly when I have only two letters, I cannot do any better than assign 

the one of them 0 and one of them 1, so the base case is optimal. So, we will assume that 

this optimal for k minus 1 letters and now show that also optimal for k letters. 

(Refer Slide Time: 20:17) 

 

So, recall that, we went to k minus 1 by combining the two lowest frequency letters as 1, 

constructing an optimal tree for these smaller alphabet and then expending the x, y get a 

new. So, the claim was when I go from the tree over k minus letters to the tree over k 

554



letters, the cost is going to increase, but this cost is going to be fix by whichever letters I 

choose to contract. 

So, if I choose x and y to merge to go from T to T prime, then the amount by the which 

the average bits per letter is going to change is exactly the frequency of this combine 

letter f x y. So, the deterministically fix by which one I choose, then even though I do 

know the cost of the trees directly, I can tell you that the cost is going to be different by 

this some after. 

(Refer Slide Time: 21:08) 

 

This is not very difficult to prove, so in that summation that we had, so in the tree 

notation remember this depth of z is the same as the length of the encoding of set, 

because the depth exactly a reflex the length of the string use to encoded. So, this is our 

A B L calculation. Now, for every node other than the x y and x y, there are exactly at 

the same position in T and T primes. 

So, this these sum summation with terms do not change, so the only changes are these 

three nodes. So, what I will do and going to T prime to T is I will remove this 

contribution of the composite letter x, y. And then at a next level which is 1 plus the 

depth of the x y, I will add the node f x and I add the node f x and I will get the 

components x y, f x times that plus x y times, I am subtracting this amount in the left, 

then I am adding this amount to the right. 

555



So, now, actually f of x y is nothing but f x plus f y. So, this left hand side term is 

actually this right hand side component depth of x y, times of x plus y. So, I am 

subtracting this and adding it back, so the cancel each other, so therefore, all am left with 

is one times that the x plus y which is f x by f y or f x y. So, therefore I am going from T 

prime to T, the crucial thing is only depend for which letters I have contract, that fix is 

the difference unique. 

(Refer Slide Time: 21:51) 

 

Now, let us assume that, we know how to solve all k minus 1’s say alphabets efficiently 

and we have done is recursive thing to construct the tree for size k. Suppose, this is 

another strategy would produce the better tree for size k, so this another tree candidate 

tree S produce by some different strategy, who is average bits for letter is strictly better 

than the one that we construct recursive. 

Now, in S, we know for sure that these two letters that we use the in recursive 

construction x and y. So, they occur somewhere the bottom of this tree. So, this is my 

tree S, these must be leave nodes, because they have the lowest frequency is over all the 

letters, so must be a maximum depth, that they may not be next to each other. But, it 

does not matter, because since they are both and maximum depth, I can move them 

around, this step, I can move letters around, I can reassign the two other leaf to a sender. 

Such that, I come with the configuration I come to new S, I call it S again, where actually 

have x and y together. I can assume that the S, that has this optimal property, which is 

556



better in the tree as constructed, actually as x and y a sibling leaves other maximum 

depth. Now, what I am going to do is this S, I am going to concretely fuse this and get an 

S prime. 

So, this explain will be our k minus 1 letters except instead of doing this by a recursive 

call, I am actually taking a call concrete tree over k letter and I am actually compressing 

to two nodes into 1 and call in it to tree over k minus 1 data set. But, because this over k 

minus 1 letters and these are represent the encoding, it cannot be any better than the 

encoding that I recursively computed for k minus 1 letters, because I am assumed by 

induction by that algorithm those efficiently for k minus 1 letters. 

So, so S prime is no better than T time, but as prime plus f of x y is S, T prime plus f of x 

y is T. So, the different T prime and T and S prime S and exactly the same. So, the S 

prime is a then T prime, then S cannot any better than T. So, it was a contradiction to 

assume that as I strictly better than T is this 2’s that strategy of recursively computing T 

is optimal for all k. 

(Refer Slide Time: 25:21) 

 

The word about the implementation, so what we have to do is k minus 1 time, we have to 

merge this two minimum values and compute the recursive solution, bottle neck, what 

will make is finding the minimum values. If you use an array, then as we know scan the 

array instant to find the minimum values, remember that the minimum of values keep 

changing, I cannot short it one send for all. Because, each time I combine two letters, I 

557



can use a new letter into my array with a new minimum value which was not there before 

and not a new value, which may not there before it is may or may not be the minimum. 

So, each state I have to find the minimum, so it is an order case can each time, so linear 

scan and I do this appropriate k these times. So, I get order case two, but it should be 

fairly cleared into see that this bottle neck can be got around by using a heap, where 

there is precise what heaps are good at finding the minimum. 

(Refer Slide Time: 26:13) 

 

So, if I maintain the frequencies is not at as a heap, then the order log k time, I can find 

the minimum values and then I can insert back the new composite letter also into heap in 

to log k time. So, each iteration takes some log k, and so I am improving from k square 

to k log k. 

558



(Refer Slide Time: 26:33) 

 

So, recall that, we mention that the beginning that this is going to be a last greedy 

algorithm. So, y is greedy, well because every time, we make a recursive call, we are 

deciding to combine two nodes into one and the two letters we are choose always once 

with the lowest frequencies. Now, what is to say, that we could not to better by choosing 

the lowest then the third rows per, but we now a try, we only try to lowest to the second 

rows. 

So, we make a locally optimal choice and we keep going with choice, never going back 

to the visited, and finally we get a global solution. Now, we are prove that this global 

solution is actually optimal and we have to do that, because there is no other reason is 

expect that I making a short sited choice, at the current time take the two worst 

frequencies and combine them, that you are always going to get the best solution. So, 

this is very much the greedy is letter. 

559



(Refer Slide Time: 27:25) 

 

So, finally a brief historical note, so Clot Shannon is the father of information theory and 

when, we are looking at these problems around 1950 are, so they where face to this 

problem are finding and efficient. So, Shannon and Fano, proposed the divide and 

conquer thing, so what us it was let us look at the encoding of the alphabet. So, some of 

them are going to start with 0, some other going to start with 1. 

Everything which is in the left sub tree of this coding tree that we construct is going to 

have a code of the found 0 are something, something, everything on the right is going to 

have something at the found once. So, it seem intuitive to them, then divide and conquer 

strategy is good, what you can put letters on this side, such that the occupied roughly of 

the frequency weight of the total alphabet. That is a frequencies of all the letters, who's 

encoding start with 0, their frequencies added to roughly hard and the other one also to 

hard. 

So, split the alphabet in the two of equal weight assign some of them to start with 0’s, the 

other to start with 1, then I recursive it is solve this t. So, a partition is A 1, A 2, sums of 

the frequencies in each other sets are roughly equal, solve them recursively. 

Unfortunately, this is not guaranty to generate an optimal encoding, you can come up to 

the example, where you can do this and then end of the something which you can 

improve by doing some other. 

560



So, it turned out the Huffman was a graduates student in a course of Fano, he heard about 

this problem and we thought about it, and after a few years he came up with this clever 

algorithm which we are done in it. 

561


	106106131 Week-8
	lec1
	lec2
	lec3
	lec4
	lec5
	lec6
	lec7
	lec8
	lec9
	lec10
	lec11
	lec12
	lec13
	lec14
	lec15
	lec16
	lec17
	lec18
	lec19
	lec20
	lec21
	lec22
	lec23
	lec24
	lec25
	lec26
	lec27
	lec28
	lec29
	lec30
	lec31
	lec32
	lec33
	lec34
	lec35
	lec36
	lec37
	lec38
	lec39
	lec40
	lec41
	lec42
	lec43
	lec44
	lec45
	lec46
	lec47
	lec48
	lec49
	lec50
	lec51
	lec52
	lec53
	lec54
	lec55
	lec56



